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There are two classes of problems involving electromagnetic scattering by small par-
ticles:  the direct problem and the inverse problem.  Thus far, we have dealt primarily
with the direct problem of calculating or measuring the scattering by a known, well-
defined system.  The so-called inverse problem is to characterize a system of interest
using scattering data collected from laboratory measurements or remote sensing ob-
servations.

Given the unlimited diversity of particle types in nature and in the laboratory, one
may expect a significant variability in the optical properties of particles encountered
in different applications.  Therefore, solving the inverse problem may often be facili-
tated by previous knowledge of how the various absorption and scattering properties
of small particles may depend on the particle size parameter, morphology, relative
refractive index, and orientation.  This knowledge may be the cumulative result of
analyzing many specific cases supplemented by careful interpolation or extrapolation
to the range of particle characteristics not specifically covered by existing theoretical
or experimental results.

The purpose of the following two chapters is to discuss the current understanding
of the optical properties of small particles.  Although we have not attempted an ex-
haustive summary of all published results, we hope that these chapters will provide
useful information to those interested in a preliminary qualitative or semi-quantitative
analysis of a specific problem as well as to those evaluating the feasibility of a more
precise quantitative solution and considering various solution approaches.  We also
discuss a few selected applications which demonstrate the great potential of electro-
magnetic scattering as a noninvasive particle characterization and remote sensing
tool.
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Chapter 9

Scattering and absorption properties of spherical
particles

The decisive advantages of the Lorenz–Mie theory compared to any other theoretical
technique are its unparalleled numerical accuracy, high computational efficiency, and
applicability to essentially any size parameter and relative refractive index. These attrib-
utes permit a comprehensive study of electromagnetic scattering by at least one class of
small particles, viz., isotropic and homogeneous spheres.  Although a substantial fraction
of the particles encountered in natural and laboratory conditions are nonspherical, the
Lorenz–Mie theory provides a first-order description of many optical effects that are
common to all small particles and may not be intuitively obvious.  Furthermore, there are
many practical situations in which the scattering particles in question are almost, if not
precisely, spherical so that the Lorenz–Mie theory can be expected to apply directly.
Hence our approach is to begin by a detailed analysis of the scattering and absorption
properties of spherical particles and continue, in the following chapter, with a discussion
of the effects caused by particle nonsphericity.  All numerical data discussed in this
chapter have been computed using the Lorenz–Mie code described in Section 5.10 and
the ray-tracing code described by Macke and Mishchenko (1996).

9.1 Monodisperse spheres

Two properties of the extinction efficiency factor extQ  make it often a more conven-
ient quantity to display than the extinction cross section.  First, )( 2

extext rCQ π=  is a
function of the dimensionless size parameter 12 λπrx =  (subsection 5.8.2), whereas
the extinction cross section extC  itself depends on both the particle radius, r, and the
wavelength in the surrounding medium, .1λ   Second, Eq. (7.12) shows that, in the
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large-particle limit, extC  is proportional to the second power of r and hence may span
many orders of magnitude, depending on the range of particle radii displayed,
whereas the asymptotic value of extQ  is 2 and its maximum value is often not much
greater than the asymptotic value.

The solid curve in Fig. 9.1 shows the extinction efficiency factor extQ  as a func-
tion of size parameter for monodisperse spherical particles with a relative refractive
index m = 1.4, and the dotted curve depicts the asymmetry parameter .cos �� Θ   Since
the imaginary part of the relative refractive index is here set at zero, the scattering
efficiency factor is equal to the extinction efficiency factor, the absorption efficiency
factor is equal to zero, and the single-scattering albedo is equal to unity.  In agreement
with Eqs. (7.3), (7.7), and (7.12), both extQ  and �� Θcos  rapidly vanish as x ap-
proaches zero, and extQ  tends to its asymptotic value 2 as .∞→x   In the intermedi-
ate (so-called resonance) region of size-parameter values, the extinction efficiency
factor can exceed the geometrical optics value, 2, especially as the real part of the
relative refractive index is increasing (cf. Fig. 9.2).

Both curves in Fig. 9.1 are characterized by a succession of major low-frequency
maxima and minima with superimposed high-frequency ripples composed of sharp,
irregularly spaced extrema, some of which are super-narrow spike-like features.  The
major maxima and minima are called the “interference structure” since, as tradition-
ally explained, they are the result of interference of the light diffracted and
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Figure 9.1.  Extinction efficiency factor extQ  (solid curve) and asymmetry parameter �� Θcos
multiplied by a factor of 4 (dotted curve) versus size parameter x  for monodisperse spherical
particles with a relative refractive index m = 1.4.
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transmitted by the particle (van de Hulst 1957; Chýlek and Zhan 1989; Lock and
Yang 1991).  A light ray passing through the center of a sphere acquires a phase shift

),1(2 R −= mxρ  where Rm  is the real part of the relative refractive index.  There-
fore, constructive and destructive interference and, thus, maxima and minima in the
extinction efficiency curve, occur successively at intervals π2≈  in ρ  (see Fig. 9.3,
which shows extQ  as a function of ρ  for monodisperse spheres with various real
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Figure 9.2.  Extinction efficiency factor extQ  versus size parameter x  for monodisperse
spherical particles with relative refractive indices m = 1.3, 2, and 4.
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relative refractive indices).  With ,R ∞→m  the central transmitted rays are increas-
ingly attenuated by the external reflection, and the interference structure becomes less
pronounced (cf. Fig. 9.2) and ultimately disappears (Chýlek and Zhan 1989).

Unlike the interference structure, the ripple is caused by the resonance behavior of
the Lorenz–Mie coefficients na  and nb  (see, e.g., the review by Hill and Benner
(1988) and references therein).  The resonances in lower-order coefficients are rela-
tively broad and often overlap.  As n increases, the resonance features become nar-
rower, and starting with n ~ 20 (for m = 1.4) each feature in the ripple structure can
be identified with an individual resonance in the corresponding partial coefficient na
or .nb   As the size parameter approaches a resonant value, the denominator of a Mie
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Figure 9.3.  Extinction efficiency factor versus phase shift for monodisperse spherical particles
with relative refractive indices m = 1.05, 1.15, 1.4, and 2.  The vertical scale applies to the
curve for m = 1.05, the other curves being successively displaced upward by 2.
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coefficient na  or nb  approaches a local minimum, thereby causing a local extremum
(maximum or minimum) in the curve for a specific scattering characteristic.  Ac-
cordingly, the numbers of spike-like extrema in the two curves in Fig. 9.1 are identi-
cal, and a sharp local maximum in the extinction curve always corresponds to a sharp
local minimum in the asymmetry parameter curve.  Some of the resonance features
can be extremely narrow.  This is demonstrated in Fig. 9.4, which shows the angular
profile of the resonance centered at x ≈ 38.9983.  The dots indicate the sampling
resolution used in Fig. 9.1, illustrating that it is just coincidence that the resonance
depicted in Fig. 9.4 is resolved in Fig. 9.1.

Figure 9.5 demonstrates that the resonance features shown in Fig. 9.4 are not sim-
ply an isolated peak in extQ  and an isolated hollow in .cos �� Θ   Instead, Fig. 9.4 de-
picts merely a cross section (corresponding to m = 1.4) of a long crest and a co-
located long canyon appearing in the surface plots of extQ  and ,cos �� Θ  respectively,
as functions of size parameter and real relative refractive index.  It is interesting that
the middle of the crest and the middle of the canyon in Fig. 9.5 follow the curves mx
= constant.  This means that, for a given resonance, increasing the relative refractive
index shifts the location of the maximum in extQ   (and the minimum in )cos �� Θ  to-
wards smaller size parameters.

It is straightforward to show (Chýlek 1973; Probert-Jones 1984) that the Lorenz–
Mie coefficients given by Eqs. (5.219) and (5.220) can be expressed as

6105 − 6102 − 6101 −5101 −× 0Im(m) = 

Asymmetry parameter    3×
Extinction efficiency factor

Size parameter
38.99 3938.995
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Figure 9.4.  Profile of the resonance centered at x ≈ 38.9983 for 4.1R =m and five values of
.Im   The dots show the sampling resolution used in Fig. 9.1.
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Figure 9.5.  High-resolution surface plots of the extinction efficiency factor and asymmetry
parameter versus size parameter and relative refractive index for monodisperse nonabsorbing
spherical particles.
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where

),()()()(),( xxxxxp nnnnn mmmm ψψψψ ′−′=    (9.3)

),()()()(),( xxxxxq nnnnn mmmm ψχχψ ′+′−=    (9.4)

),()()()(),( xxxxxr nnnnn ψψψψ ′−′= mmmm    (9.5)

),()()()(),( xxxxxs nnnnn χψψχ ′+′−= mmmm    (9.6)

and )()( xxyx nn −=χ  (cf. Eqs. (5.218) and (C.1)).  The convenience of writing
),( mxan  and ),( mxbn  in this form is that the functions ),,( mxpn  ),,( mxqn

),,( mxrn  and ),( mxsn  are real if the relative refractive index is real.  The denomi-
nators of Eqs. (9.1) and (9.2) can vanish completely only for complex size parame-
ters, whereas for real size parameters they always remain finite.  Therefore, what hap-
pens at a resonance is that either ),( mxqn  or ),( mxsn  vanish.  For this specific set of
x-, m-, and n-values, the real part of ),( mxan  or ),( mxbn  reaches its maximum pos-
sible value, unity, and the imaginary part vanishes (Chýlek 1976).  Accordingly,
quantities like ),(Re mxan  and |),(| mxan  or ),(Re mxbn  and |),(| mxbn  exhibit a
local maximum, thereby causing spikes in the two-dimensional extinction and scat-
tering curves corresponding to fixed m or x (cf. Eqs. (5.156) and (5.157)).  Thus Eqs.
(9.4) and (9.6) give the following mathematical condition for a resonance:

0)()()()( =′+′− xxxx nnnn mmm ψχχψ  (9.7a)

or

.0)()()()( =′+′− xxxx nnnn χψψχ mmm  (9.7b)

Note that for given n and m, these equations have infinitely many solutions at discrete
values of x.

Another way to look at resonances is to consider the complex size-parameter
plane (though still with the restriction of a real relative refractive index) and write

),( mxan  or ),( mxbn  as a simple pole, e.g.,

,),(
zx

xan −
= α

m    (9.8)
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where z is the position of the pole and α  is the residue (Conwell et al. 1984; Hunter
et al. 1988).  The resonant size parameter is then given by the real part of z.

A physical interpretation of resonances is that of a situation where rays propagate
around the inside surface of a spherical particle, confined by an almost total internal
reflection (Hill and Benner 1988):  the rays approach the internal surface at an angle
beyond the critical angle and are totally reflected each time.  After propagating
around the sphere, the rays return to their respective entrance points exactly in phase
and then follow the same path all over again without being attenuated by destructive
interference.  Therefore, it takes longer for the electromagnetic energy of the rays to
leak out of the sphere, and very large energy densities can be accumulated inside the
particle near its surface.  Since the accumulated energy is removed from the incident
beam, the result of the resonance process is an increased extinction efficiency of the
particle.  It can be shown that the longer the internal path of the rays, the narrower the
resonance  (e.g., Roll and Schweiger 2000).

For a fixed m and each index n, there is a sequence of resonance x-values for ei-
ther ),( mxan  or .m),(xbn  Hence it is convenient to label each local extremum with
the type of mode causing the resonance (a or b), the subscript n, and a superscript l
indicating the sequential order of x (Chýlek 1976; Chýlek et al. 1978).  This labeling
convention is illustrated in the upper panel of Fig. 9.6, which shows the resonance
extinction features for a water droplet within the interval ].51,50[∈x   The main traits
of the resonance features are that their width decreases as n increases for a given l and
their width increases as l increases for a given n.  For n greater than about 50, the l = 1
resonance can become extremely narrow, as demonstrated in the lower panel of Fig.
9.6.

Figure 9.4 shows the behavior of the super-narrow resonance centered at x ≈
38.9983 (for )4.1=m  with increasing imaginary part of the relative refractive index

.Im  It is seen that raising Im  from 0 to a very small value of 510−  almost completely
destroys this spike-like feature while causing no change whatsoever in the back-
ground extQ  and �� Θcos  values.  It takes significantly greater -Im values to elimi-
nate the broader resonances and still greater values (of order 0.1) to eliminate the in-
terference structure (Figure 9.7).  This is not surprising.  Indeed, the diffracted rays
are unaffected by absorption, whereas attenuation of the transmitted rays gives
weaker interference in the near-forward direction and a decrease in amplitude of the
interference structure.  The transmitted rays are attenuated as they pass through the
center of the sphere and thus travel inside the particle a distance equal to one sphere
diameter.  The super-narrow resonances correspond to much longer internal ray paths
(several sphere circumferences) and are much more stronly affected by internal ab-
sorption.  Therefore, measurements within super-narrow resonances can be far more
sensitive to weak absorption than measurements in the “continuum” or within broader
ripple features.

It appears that manifestations of the ripple structure can be even more spectacular
in the elements of the scattering matrix than in the optical cross sections and the
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asymmetry parameter (Mishchenko and Lacis 2000).  Since the normalized Stokes
scattering matrix (4.65) for a fixed relative refractive index depends on two variables,
viz., the size parameter x and the scattering angle ,Θ  it is convenient to visualize the
elements of this matrix using two-dimensional color images plotted with fine angular
and size-parameter sampling resolutions.

Plate 9.1 shows the degree of linear polarization of scattered light for an unpolar-
ized incident beam, =−= scasca IQPQ (%),11 ab−  as a function of Θ  and x for
monodisperse spheres with a relative refractive index m = 1.4.  This image was
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Figure 9.6.  (a) Ripple structure of extinction by a water droplet )10i33.1( 8−×+=m  on the
interval [50, 51] of size parameters.  (b) High-resolution profile of the resonance .1

61b
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created using sampling resolutions °= 31∆Θ  and .05.0∆ =x  With the exception of
the region of Rayleigh scattering (x � 2; cf. the lowest panel of Fig. 7.1), the entire
polarization image is a field of sharp, alternating maxima and minima.  The frequen-
cies of the maxima and minima over both Θ and x increase with increasing size pa-
rameter.  This very complex “butterfly” structure, which appears both to be chaotic
and to reveal a slightly perceptible order, was first discovered by Hansen and Travis
(1974) and results from interference and resonance effects for particles of a single
size.  In their paper published 30 years ago, Hansen and Travis could use only white
and black and, therefore, blackened the regions of positive polarization and left the
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Figure 9.7.  The set of curves (bottom to top) shows the effect of increasing absorption on the
interference and ripple structure of the extinction efficiency factor for monodisperse spherical
particles with real part of the relative refractive index =Rm 1.4.  The vertical axis scale applies
to the curve with ,0I =m  the other curves being successively displaced upward by 2.
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regions of negative polarization white.  The use of the continuous color bar shown in
Plate 9.1 allowed us to build a complete image of the butterfly structure with a de-
tailed gradation of the magnitude of polarization as well as its sign.

Plate 9.2 provides a zoomed image of a small part of the field covered by Plate 9.1
and reveals with much greater detail the enormous complexity of the scattering pat-
tern.  Now the sampling resolution °= 1.0(∆Θ  and )007.0∆ =x  is fine enough to
exhibit several horizontal “dislocations” or “anomalous strips”, which are first indi-
cators of super-narrow resonances.  One of these is centered at x ≈ 38.9983 and is
shown with even greater sampling resolution °= 05.0(∆Θ  and )00001.0∆ =x  in the
top middle panel of Plate 9.3.  The top left and top right panels of this plate depict the
ratios 13 aa  and 12 ab  and demonstrate an immense degree of variability within the
resonance, including drastic changes of sign and strong dependence on scattering an-
gle.  The latter is not surprising, since the corresponding resonance Lorenz–Mie coef-
ficient contributes differently to the different expansion coefficients appearing in Eqs.
(4.75)–(4.80) (see also Eqs. (4.109)–(4.114) and (5.160)–(5.162)).  In consequence,
its effect on the scattering matrix elements is different at different scattering angles.
This conclusion is corroborated by Fig. 9.8, which shows a very strong angle-
dependent change in the phase function 1a  within the resonance, including a sharp
peak at the backscattering direction.

The middle three panels of Plate 9.3 are analogous to the top three panels, but

Figure 9.8.  High-resolution surface plot of the phase function within the super-narrow reso-
nance centered at x ≈ 38.9983 for monodisperse spherical particles with m = 1.4.
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show the degree of linear polarization computed for three increasing values of the
imaginary part of the relative refractive index.  Although most polarization features
within the resonance gradually weaken and ultimately disappear, the super-narrow
minimum located at °≈177Θ  and x ≈ 38.99828 for 0I =m  (the top middle panel of
Plate 9.3) becomes much more pronounced and shifts toward larger Θ and x before it
finally disappears at .10 4

I
−=m  This behavior is quite different from that observed

for extQ  and �� Θcos  (Fig. 9.4).
The bottom three panels of Plate 9.3 show the degree of linear polarization versus

Θ and Rm  for x = 38.9983 and .0I =m  Interestingly, these panels are hardly distin-
guishable from the top three panels.  This suggests again that, at least for nonabsorb-
ing particles, the behavior of super-narrow resonances is determined by the product of
the relative refractive index and size parameter rather than by each of these quantities
separately.  This also means that precise measurements of super-narrow resonances
can be used not only for particle sizing but also for an accurate determination of the
relative refractive index, provided that the particle size is already known.

A question that is naturally raised is whether the super-sharp resonances are
physically “real”, or are artifacts of a too-literal application of the theoretical macro-
scopic concept of “sphere” to microscopic objects.  However, high-quality laboratory
data, e.g., measurements of the intensity of light scattered by a gradually evaporating
glycerol micro-droplet (Chýlek et al. 1992), provide an impressive experimental
demonstration of the actual occurrence of this phenomenon and its practical useful-
ness as an optical particle-characterization tool (Section 9.7).  As follows from the
previous discussion, high-precision measurements within super-narrow resonances
should be particularly useful for accurate particle sizing, determining the real part of
the relative refractive index, and detecting minute deviations of the imaginary part of
the relative refractive index from zero.

The extreme sharpness of some resonances may also help explain some of the mi-
nor, but nevertheless perplexing, differences that sometimes appear in intercompari-
sons of the Lorenz–Mie results for polydisperse spheres obtained by different groups
(e.g., Boucher et al. 1998).  In view of the fact that the Lorenz–Mie theory is exact,
one would expect that, for given values of particle size and relative refractive index,
precise agreement must be found for the resultant Lorenz–Mie parameters to many
significant figures.  Thus, the first step in such intercomparisons should be to verify
that the Lorenz–Mie codes produce identical results for the same monodisperse size
parameter and relative refractive index.  Since the polydisperse scattering characteris-
tics involve integration over a size distribution of particles (Section 3.2) with a num-
ber of integration points large enough to provide the desired numerical accuracy
(Section 5.10), it is clear from the results in Figs. 9.1 and 9.4 that convergence may
not be uniformly monotonic as the number of integration points is increased.  Indeed,
if an integration mesh point hits a sharp resonance, there may be an apparent local
discontinuity that is greater than 5% compared to the background value.  Hence for



Scattering, Absorption, and Emission of Light by Small Particles250

precise Lorenz–Mie scattering characteristics, an exceedingly high resolution in size
parameter space may be needed to resolve the resonance features fully.

9.2 Effects of averaging over sizes

Most natural and artificial ensembles of spherical particles do not exhibit the spike-
like resonances described in the previous section because even a narrow polydisper-
sion washes out features that strongly depend on particle size.  Figure 9.9 illustrates
the effect of increasing width of the size distribution on the extinction efficiency fac-
tor for the gamma size distribution, Eq. (5.245), of spherical particles with a relative
refractive index m = 1.4.  The figure shows =extQ ���� GCsca  versus effective size
parameter eff1eff rkx =  for five increasing values of the effective variance ,effv  where

1k  is the wave number in the surrounding medium and �� scaC  and ��G  are the en-
semble-averaged scattering and geometrical cross sections per particle, respectively.
The effective radius effr  and the effective variance effv  are defined by Eqs. (5.248)
and (5.249) and, for the gamma distribution with 0min =r  and ,max ∞=r  coincide with
the parameters a and b of Eq. (5.245), respectively.  (The computational meaning of
the upper limit ∞=maxr  was discussed in subsection 5.10.1.)  Figure 9.10 demon-
strates the broadening of the size distribution with increasing effv  while the effective
radius is kept constant.  Note that the size distribution with 0eff =v  corresponds to
monodisperse particles with radius ,effrr =  the effective variance values in the range
[0.05, 0.1] are characteristic of sulfuric acid particles forming the clouds on Venus
(Hansen and Hovenier 1974), and the value 2.0eff =v  is typical of water cloud parti-
cles in the Earth’s atmosphere (Mazin and Khrgian 1989).

As was the case with increasing absorption, increasing the width of the size distri-
bution first extinguishes the ripple and then eliminates the interference structure in

.extQ   It is in fact remarkable that as narrow a dispersion of sizes as that correspond-
ing to 01.0eff =v  completely washes out the ripple structure.  The first major maxi-
mum of the interference structure persists to larger values of ,effv  but eventually
fades away too.  For distributions with effv � 0.2, the only surviving features are the
reddening at small size parameters discussed in Section 7.1 and the asymptotic geo-
metrical optics trend 2ext →Q  as ∞→x  discussed in Section 7.4.

The presence of the first maximum of the interference structure for relatively nar-
row size distributions creates the possibility of an infrequent phenomenon for which
aerosol particles of just the right size have a lower extinction efficiency factor in the
blue than that at the larger wavelengths in the red.  Thus, in contrast to the familiar
reddening of the setting sun owing to enhanced Rayleigh scattering, a sufficiently
narrow size distribution of aerosol particles in the atmosphere, with an average size
such that 4 � )1(2 R −mx � 7 for visible wavelengths (cf. Fig. 9.3), can produce a blue
cast to the sun or moon and is perhaps responsible for the implied rarity associated
with the phrase, “once in a blue moon” (cf. Bohren and Huffman 1983, Chapter 4;
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Lynch and Livingston 1995).
Plate 9.4 shows the evolution of the linear polarization pattern with increasing

width of the size distribution.  The case 01.0eff =v  demonstrates that even a very
narrow size distribution is sufficient to extinguish most of the interference and reso-
nance effects.  With increasing ,effv  the maxima are smoothed out, the minima are
filled in, and the polarization becomes more neutral. Additional effects of increasing

effv  are the depression to smaller size parameters of the region of maximal polariza-
tion corresponding to Rayleigh scattering and the erosion of the bridge of positive
polarization connecting the Rayleigh region and the area of positive polarization at

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

11

12

Effective size parameter

E
xt

in
ct

io
n 

ef
fi

ci
en

cy
 f

ac
to

r

veff = 0

veff = 0.01

veff = 0.05

veff = 0.1

veff = 0.2

Figure 9.9.  The effect of increasing width of the size distribution on the interference and ripple
structure in extQ  for nonabsorbing spherical particles with relative refractive index 1.4.  The
vertical axis scale applies to the curve with ,0eff =v  the other curves being successively dis-
placed upward by 2.
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scattering angles around .160°   The island of positive polarization at effx ~ 10 and Θ
~ °25  for 01.0eff =v  is an anomalous diffraction feature produced by the interfer-
ence of diffracted light and light reflected and refracted by the particles in the near-
forward direction (Hansen and Travis 1974).  The magnitude of this feature strongly
depends on the width of the size distribution: the feature significantly weakens as effv
increases from 0.01 to 0.07 and has completely disappeared for .2.0eff =v   All these
effects of broadening the size distribution are easy to understand qualitatively in terms
of taking weighted averages along vertical lines of increasing length in the polariza-
tion diagram for monodisperse particles.

9.3 Optical cross sections, single-scattering albedo, and
asymmetry parameter

In the rest of this chapter we will analyze the scattering and absorption properties of
polydisperse spherical particles.  Most of the illustrative examples will be based on
computations for the gamma distribution of particle radii with ,0min =r  ,max ∞=r
and a fixed effective variance .15.0eff =v   The latter is a value characteristic of a size
distribution that is neither particularly narrow nor broad.

Figure 9.11 presents surface plots of the extinction efficiency factor versus effec-
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Figure 9.10.  Gamma size distribution ),(rn  Eq. (5.245), with ,0min =r  ,max ∞=r  =effr 1 (in
arbitrary units of length), and =effv 0, 0.01, 0.05, 0.1, and 0.2.  The size distribution is nor-
malized according to Eq. (3.26).
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tive size parameter and real part of the relative refractive index, for four values of the
imaginary part ranging from 0 to 0.3.  Figures 9.12–9.16 are analogous to Fig. 9.11
and present visualizations of the scattering and absorption efficiency factors, the sin-
gle-scattering albedo, the asymmetry parameter, and the radiation-pressure efficiency
factor. The 51 refractive index gridlines are drawn at 0.02 intervals and correspond to
relative refractive indices m = 0.8, 0.82, … 1.78, and 1.8.  The 81 size parameter
gridlines are drawn at 0.5 intervals and correspond to size parameters effx = 0, 0.5, 1,
…, 39.5, and 40.

The upper left panel of Fig. 9.11 shows that the first interference maximum in
extQ  indeed follows the curves constant,|1| Reff =−mx  as discussed in Section 9.1.

For m = 1, both extQ  and scaQ  vanish because there is no scattering and absorption
when the particle refractive index matches that of the nonabsorbing surrounding me-
dium.  This does not mean, however, that dimensionless quantities such as the single-
scattering albedo, the asymmetry parameter, and the phase function must also disap-

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3Qext

Qext Qext

Qext

Figure 9.11.  Extinction efficiency factor versus effective size parameter and real part of the
relative refractive index for a gamma size distribution of spherical particles with =effv 0.15.
The imaginary part of the relative refractive index varies from 0 to 0.3.
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pear as .1→m  All of these are ratios of vanishing quantities and remain finite in the
mathematical sense as the particle refractive index approaches that of the surrounding
medium.  The extinction and scattering efficiency factors tend to zero as .0eff →x  In
the limit ,eff ∞→x  the extinction efficiency factor approaches the geometrical optics
value 2.  As Im  increases from 0 to 0.3, the first interference maximum in both extQ
and scaQ  weakens and almost disappears, except for Rm  close to 1.8.  With the ex-
ception of Rm  close to unity, the scattering efficiency factor in Fig. 9.12 decreases
with increasing .Im  With either ∞→Im  or ,R ∞→m  scaQ  for very large particles
asymptotically approaches the value for a perfect reflector, i.e., .2sca →Q

The absorption efficiency factor is zero for Im = 0 but rapidly grows with in-
creasing imaginary part of the relative refractive index (Fig. 9.13).  It can even exceed
unity in the resonance region of the size parameters, which means that a particle can
absorb significantly more power than the value obtained by multiplying the incident
intensity by the area of its geometrical cross section.  This phenomenon shows that

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

QscaQsca

Qsca Qsca

Figure 9.12.  As in Fig. 9.11, but for the scattering efficiency factor.
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spherical particles can perturb the electromagnetic field far beyond their physical con-
fines and illustrates once again the limited applicability of the geometrical optics ap-
proximation, which predicts that the absorption efficiency factor cannot exceed unity.
As ,I ∞→m  the particles become perfect reflectors, and absQ  vanishes.

The single-scattering albedo is identically equal to unity for nonabsorbing parti-
cles but almost vanishes for ≈Rm 1 and small ,Im  because essentially all the light
extracted by the particles from the incident beam is absorbed rather than scattered (the
upper right and lower left panels of Fig. 9.14).  As Im  deviates from zero, the single-
scattering albedo vanishes in the Rayleigh region, in accordance with Eqs. (7.3) and
(7.4), decreases for all Rm  and ,effx  and develops a feature resembling the first inter-
ference maximum in extQ  and .scaQ  With the exception of -Rm values close to unity
coupled with small or zero ,Im  the single-scattering albedo depends only weakly on
the real part of the relative refractive index.  In the limit ,I ∞→m  the single-
scattering albedo reaches the asymptotic value unity for perfectly reflecting spheres.
For particles much larger than the wavelength, ϖ  cannot be smaller than 0.5.  Indeed,
this value can only be reached when the ray-tracing scattering cross section in Eq.

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3Qabs

Qabs

Qabs

Qabs

Figure 9.13.  As in Fig. 9.11, but for the absorption efficiency factor.
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(7.13) vanishes, which implies that all light striking the particle is refracted into the
particle and is internally absorbed.

The asymmetry parameter, ,cos �� Θ  is zero for very small particles, in agreement
with the prediction of the Rayleigh approximation, but then rapidly grows as effx
increases from 0 to about 2 (Fig. 9.15).  Then it remains positive, thereby indicating
forward-scattering particles, and shows little dependence on the particle size parame-
ter.  For particles with m ≈ 1, �� Θcos  becomes independent of m and depends on the
size parameter according to the Rayleigh–Gans approximation (Irvine 1963).  In par-
ticular, for very large nonabsorbing particles with m ≈ 1, �� Θcos  can reach values
approaching unity because the diffraction lobe becomes extremely narrow, there are
no reflected rays, and the incident rays striking the particle pass through it essentially
undeviated.  The asymmetry parameter becomes almost independent of Rm  for
strongly absorbing particles (lower right panel of Fig. 9.15) because the scattered light

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

ϖ ϖ

ϖ ϖ

Figure 9.14.  As in Fig. 9.11, but for the single-scattering albedo.
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is dominated by the diffracted and externally reflected components.  As ∞→Rm  or
,I ∞→m  the asymmetry parameter for very large particles tends to 1/2 because half

the scattered radiation is diffracted in the forward direction and half is externally re-
flected.  The reflected rays are isotropically distributed (van de Hulst 1957) and make
no contribution to ,cos �� Θ  whereas �� Θcos  for the diffracted light is unity, Eq.
(7.17), thereby yielding total asymmetry parameter equal to 1/2.  In the limit 0→x
and ∞→Rm  or ,I ∞→m 4.0cos −→�� Θ  (van de Hulst 1957, Section 10.61).

In a similar way to the extinction and scattering efficiency factors, the radiation-
pressure efficiency factor prQ  vanishes for very small particles and particles with

.1≈m  prQ  in Fig. 9.16 always increases with Im  and, for nonabsorbing and mildly
absorbing spheres, always increases as Rm  increases from 1 to 1.8.  However, the
dependence on the real part of the relative refractive index weakens as Im  reaches the
value 0.3.  In the limit ∞→Im  or ,R ∞→m  the radiation pressure efficiency factor
for very large particles approaches that of a perfect reflector, i.e., .1pr →Q

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

〉〈 Θcos

〉〈 Θcos

〉〈 Θcos

〉〈 Θcos

Figure 9.15.  As in Fig. 9.11, but for the asymmetry parameter.
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9.4 Phase function )(1 Θa

Many phase function features for particles larger than the incident wavelength (Fig.
7.4) can be explained through the concepts of geometrical optics, using the terminol-
ogy introduced in Fig. 9.17.  Specifically, the concentration of light near °= 0Θ  is
caused by diffraction (i = 0 in Fig. 9.17).  The external reflection (i = 1) does not gen-
erate any distinctive feature, whereas the twice refracted rays (i = 2) cause a broad
enhancement of the phase function in the forward-scattering hemisphere.

The features in Fig. 7.4 at °≈137Θ  and °130  for m = 1.33 °160(  and °88  for m
= 1.53) are the primary and secondary rainbows generated by i = 3 and i = 4 rays,
respectively.  To explain the origin of the rainbows, one needs to express the scatter-
ing angle Θ  of the emerging ray as a function of the local angle of incidence

]90 ,0[ °°∈α  (Fig. 9.17) for i = 3, 4, … .  This is always possible because the entire
ray path remains in the plane containing the incident ray and the center of the sphere.
When the derivative ααΘ d)(d i  vanishes, the scattering angle becomes nearly con-
stant for a range of incidence angles, thereby causing an increased concentration of

Qpr

Qpr Qpr

Qpr

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

Figure 9.16.  As in Fig. 9.11, but for the radiation-pressure efficiency factor.
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emerging rays.  The respective scattering angle is called the rainbow angle.  The con-
dition 0d)(d =ααΘ i  implies that the rainbow angles correspond to extrema of the
functions ).(αΘ i   Whether the extremum is a minimum or a maximum depends on i.
The primary rainbow angle °137  for m = 1.33 °160(  for m = 1.53) corresponds to a
minimum in )(3 αΘ (ray 7 in Fig. 9.18), whereas the angle °130  for m = 1.33 °88(  for
m = 1.53) corresponds to a maximum of ).(4 αΘ  As a consequence, there is a low-
intensity zone (about °7  wide for m = 1.33 and °72  wide for m = 1.53) between the
primary and secondary rainbows (the so-called Alexander’s dark band), where the
phase function is mostly determined by the externally reflected rays (i = 1).  Note,

Contributions to
scattered light:

i = 0    Diffraction
1    External reflection
2    Twice refracted rays
3    One internal reflection
4    Two internal reflections

i = 0

i = 2

i = 4
i = 1

i = 3

α

Figure 9.17.  Geometrical optics representation of scattering by a large sphere with .1R >m
(After Hansen and Travis 1974.)
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Figure 9.18.  Ray-tracing diagram explaining the origin of the primary rainbow for a large
spherical particle with m = 1.33 (after Greenler 1980).  The diagram shows that incident rays
corresponding to a finite range of incidence angles α  emerge at almost the same scattering
angle, thereby creating a localized enhancement of intensity.  The respective scattering angle

°≈137Θ  is the angle of minimum deviation for i = 3.
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however, that both rainbow angles correspond to rays that experience the least cumu-
lative deviation from the initial incidence direction and hence are angles of minimum
deviation.  The slight change of the rainbow angle with wavelength caused by disper-
sion (change of the relative refractive index with wavelength) gives rise to the spec-
tacular colorful rainbows often observed during showers illuminated by the sun at an
altitude lower than about °40  (Lynch and Livingston 1995).

The maxima in Fig. 7.4 at °=119Θ  and °141  for m = 1.53 are the i = 6 and 7
rainbows, respectively.  A minor feature on the large-scattering-angle side of the pri-
mary rainbow results from the interference of two i = 3 rays corresponding to differ-
ent local incidence angles but emerging at the same scattering angle.  This feature is
called the first supernumerary bow and is not reproduced by the standard geometrical
optics.

The enhancement of intensity in the backscattering direction )180( °≈Θ  is called
the “glory” and can be seen from an airplane as a series of colored rings around the
shadow cast by the airplane on a cloud top (Lynch and Livingston 1995).  Obvious
but relatively weak contributors to the glory are the central rays )90( °=α  externally
(i = 1) and internally (i = 3, 5, …) reflected in the backscattering direction.  Snell’s
law predicts that for real relative refractive indices in the range ,22 2/1 ≤≤ m  a non-
central incident ray °<<° 900( α  in Fig. 9.17) may emerge at °=180Θ  after just
one internal reflection (i = 3, Fig. 9.19).  Furthermore, the ray shown in Fig. 9.19(a)
always interferes constructively with the conjugate ray propagating along the same
path but in the opposite direction, Fig. 9.19(b), thereby potentially doubling the i = 3
contribution to the backscattered intensity.  This contribution may partially account
for the intense glory in the phase function for m = 1.53 and 600eff =x  in Fig. 7.4.

However, this mechanism does not explain the equally pronounced glory gener-
ated by water droplets with )2( 33.1 2/1<=m  and .600eff =x  Therefore, it is often
claimed that a major contributor to the glory is that of the edge rays ),0( °≈α  which
set up so-called surface waves on the sphere.  The latter are not included in the geo-
metrical optics formulation and are discussed by van de Hulst (1957), Nussenzveig
(1992), and Grandy (2000).

Figures 9.20–9.22 illustrate the behavior of the phase function for nonabsorbing
polydisperse spheres in the Rayleigh and resonance regions of the effective size

(a) (b)

Figure 9.19.  Rays contributing to the glory for real relative refractive indices m in the range
.22 2/1 << m
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m = 0.8

m = 1

Figure 9.20.  Phase function versus effective size parameter and scattering angle for a gamma
size distribution of spherical particles with =effv 0.15 and two values of the relative refractive
index, m = 0.8 and 1.
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m = 1.2

m = 1.4

Figure 9.21.  As in Fig. 9.20, but for m = 1.2 and 1.4.
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m = 1.6

m = 1.8

Figure 9.22.  As in Fig. 9.20, but for m = 1.6 and 1.8.
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parameter.  The 91 scattering angle gridlines are drawn at °2  intervals and corre-
spond to scattering angles ,178...,,2,0 °°°=Θ  and .180°   The 81 size-parameter
gridlines are drawn at 0.5 intervals and correspond to effective size parameters effx =
0, 0.5, 1, …, 39.5, and 40.

In the Rayleigh limit ,0eff →x  the phase functions are nearly isotropic and are
given by

)cos1()( 2
4
3

0
1

eff

ΘΘ +=
→x

a    (9.9)

(see Eq. (7.5)).  As the effective size parameter increases, the phase functions become
anisotropic, owing to increased forward scattering and decreased backscattering.  The
phase functions exhibit the strongest variability with size parameter in the range
0 effx< � 20.  As effx  approaches 40, the phase functions for m = 1.2, 1.4, 1.6, and
1.8 begin to develop typical geometrical optics features such as the strong diffraction
peak, the primary rainbow, and the glory.  As m increases, the scattering angle of the
primary rainbow increases (cf. Liou and Hansen 1971; Liou 1980) and the glory be-
comes more pronounced.  The primary rainbow angle for m = 1.8 is so large

)176( °=Θ  that the rainbow essentially merges with the intense glory.  The rainbow
and the glory are absent in the Rayleigh–Gans phase function (the lower panel of Fig.
9.20) because particles with 1≈m  do not refract and reflect the incident light.  For
the same reason the forward-scattering peak for 1≈m  is noticeably stronger than that
for the other relative refractive indices (note that in the lower panel of Fig. 9.20 the
scale goes up to 10 000).  The phase function in the Rayleigh–Gans limit 1→m  be-
comes independent of m and depends only on the size parameter (Kerker 1969).
Large particles with m = 0.8 do not generate rainbows, but instead exhibit an inter-
esting horizontal “shelf ”  at side-scattering angles followed by a sharp decrease of
intensity at larger scattering angles.  The origin of this feature for real m smaller than
but close to 1 is explained in Fig. 9.23.  Rays with local incidence angles

m arccos>α  are twice refracted in the forward or near-forward directions, whereas
rays with m arccos<α  are totally externally reflected.  The scattering angle of the
externally reflected rays decreases with decreasing .α  Therefore, m arccos2=Θ  is
the critical scattering angle, beyond which the scattered intensity is expected to fall
rapidly.  This explanation is corroborated by Fig. 9.24, which shows the results of
geometrical optics and Lorenz–Mie computations of the phase function for a gamma
distribution of spherical particles with m = 0.8, ,600eff =x  and .07.0eff =v  As ex-
pected, a sharp precipice in the phase functions occurs at .73.74)8.0arccos(2 °=≈Θ

Figure 9.25 demonstrates the effect of increasing absorption on the phase func-
tions for .4.1R =m  Comparison with the lower panel of Fig. 9.21 shows that although
increasing Im  does not change the phase function for very small (Rayleigh) particles,
the phase functions for larger particles become significantly smoother.  The suppres-
sion of refracted rays )2( ≥i  weakens and ultimately extinguishes the rainbow and
the glory.  The scattering by large particles with 3.0I =m  is dominated by diffraction
and externally reflected rays, so that the phase function consists essentially of a strong
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Figure 9.23.  Ray-tracing diagram for a spherical particle with a real relative refractive index
that is less than but close to unity.
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Figure 9.24.  Geometrical optics and Lorenz–Mie phase functions for a gamma distribution of
spherical particles with m = 0.8, ,600eff =x  and .07.0eff =v
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m = 1.4 + i0.01

m = 1.4 + i0.3

Figure 9.25.  As in Fig. 9.20, but for m = 1.4 + i0.01 and 1.4 + i0.3.
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diffraction peak in the forward direction and nearly isotropic scattering in the back-
ward hemisphere.  As a consequence, the angular profile of the phase function be-
comes remarkably similar to that for m = 1 (lower panel of Fig. 9.20), although the
virtually zero contribution of the reflected rays in the case m = 1 makes the back-
ground phase function value in the backward hemisphere significantly lower.

9.5 Backscattering

Figure 9.26 shows that the phase-function value at °=180Θ  can vary by orders of
magnitude with changing size parameter and/or real and imaginary parts of the rela-
tive refractive index.  This variability makes difficult the analysis of backscattering
intensity measurements and explains the large amount of attention paid by those in-
terpreting radar and lidar observations to quantities like the average backscattering
cross section per particle,

,
4

)180(
d

d 1sca

180

sca
b πΩ Θ

°��==��
°=

aCCC   (9.10)

the average radar backscattering cross section per particle,

��=�� bb 4 Cπσ  (9.11)

the extinction-to-backscatter ratio,
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and the backscatter-to-extinction ratio
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C
R ϖ

σ
 (9.13)

(e.g., Battan 1973; Reagan et al. 1989; Stephens 1994).  The behavior of these back-
scattering characteristics is illustrated in Figs. 9.27 and 9.28, which show the back-
scattering efficiency factor

��

��=
G
CQ b

b  (9.14)

and the backscatter-to-extinction ratio as a function of effective size parameter for a
range of the real and imaginary parts of the relative refractive index.  Note that bQ
vanishes in the limit ,1→m  because particles with the refractive index equal to that
of the surrounding medium do not scatter light, whereas the dimensionless backscat-
tering phase function and backscatter-to-extinction ratio remain finite.

A common feature of ),180(1 °a ,bQ  and beR  is that the larger the imaginary part
of the relative refractive index, the faster they reach their respective geometrical
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Figure 9.26.  Backscattering phase function )180(1 °a  versus effective size parameter for a
gamma distribution of spherical particles with =effv 0.15, Rm = 0.8, 1, 1.2, 1.4, 1.6, and 1.8,
and Im = 0, 0.002, 0.01, and 0.3.
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Figure 9.27.  As in Fig. 9.26, but for the backscattering efficiency factor.
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Figure 9.28.  As in Fig. 9.26, but for the backscatter-to-extinction ratio.
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optics limits with increasing .effx  An additional property of these backscattering
characteristics is that they almost always decrease with increasing Im  for Rm = 1.2,
1.4, 1.6, and 1.8.  For Rm = 0.8, they first decrease as Im  grows from 0 to 0.01 but
then significantly increase as Im  reaches the value 0.3 (except the backscatter-to-
extinction ratio for effx � 4).  The backscattering phase function and the backscatter-
to-extinction ratio for 1R ≠m  have a local minimum at small effective size parame-
ters, which is especially deep for m = 1.2.  The minimum becomes less pronounced
and eventually vanishes with increasing absorption.

9.6 Other elements of the scattering matrix

Plates 9.5 and 9.6 parallel Figs. 9.20–9.22 and 9.25 and show the ratios ,)()( 13 ΘΘ aa
,)()( 11 ΘΘ ab−  and )()( 12 ΘΘ ab  (in %) versus scattering angle Θ  and effective size

parameter.  The use of 21 discrete colors in these contour plots (with 20 contours at
±5%, ±15%, …, ±85%, and ±95%) allows the reader to quantify the diagrams using
white  as the reference.  The ratio )()( 11 ΘΘ ab−  is the degree of linear polarization

QP  for the scattering of unpolarized incident light provided that the Stokes parame-
ters are defined with respect to the scattering plane.  Furthermore, according to Eqs.
(1.112) and (4.14) the quantity )(|)(| 11 ΘΘ ab  gives the degree of linear polarization

LP  in the general case of the scattering of unpolarized incident light.  The signifi-
cance of this and the other two element ratios of the normalized Stokes scattering
matrix in cases involving polarized incident light and arbitrary incidence and scatter-
ing directions follows from Eq. (4.14).

In agreement with Eqs. (4.61), (4.62), and (4.66), the ratios )()( 11 ΘΘ ab−  and
)()( 12 ΘΘ ab  vanish at °= 0Θ  and ,180°  whereas 1)0()0( 13 =°° aa  and

.1)180()180( 13 −=°° aa
In the limit 0eff →x  Rayleigh scattering occurs.  In accordance with Eq. (7.5),

there is strong positive polarization with the maximal 100% value at scattering angle
,90°  whereas the ratio )()( 12 ΘΘ ab  vanishes completely.  The Rayleigh scattering

region is similar for all relative refractive indices but is compressed to smaller size
parameters for the larger values of m.  The ratio )()( 13 ΘΘ aa  is antisymmetric with
respect to scattering angle :90°  =−°−° )180()180( 13 ΘΘ aa .)()( 13 ΘΘ aa−

In the limit ,1→m  all three ratios become independent of size parameter and the
ratio )()( 12 ΘΘ ab  vanishes.  This is consistent with the well-known result of the
Rayleigh–Gans approximation, that the normalized Stokes scattering matrix is given
by
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(Kerker 1969).  The degree of linear polarization and the ratio )()( 13 ΘΘ aa  are the
same as for Rayleigh scattering.

In what follows we will normally omit the argument Θ  of the scattering matrix
elements. The ratio 13 aa  is almost always positive in the forward hemisphere, where
it is weakly dependent on relative refractive index and size parameter.  However, it
shows a considerable degree of variability with m and effx  in the backward hemi-
sphere.  The pattern of the ratio 12 ab  for most relative refractive indices and size
parameters consists of narrow regions of positive or neutral values at small and large
scattering angles separated by a wide region of negative values at side-scattering an-
gles.  Of the three ratios, the degree of linear polarization 11 ab−  exhibits the largest
degree of variability with relative refractive index and/or size parameter.  This ex-
plains the remarkable potential of polarimetry as a particle characterization and re-
mote sensing tool (Section 9.7).

With increasing ,effx  the scattering matrix starts to develop typical geometrical
optics features.  At small scattering angles the linear polarization is small because of
the predominance of unpolarized diffracted light (for unpolarized incident light).
Most of the light scattered in the near-forward direction is due to twice-refracted rays
(i = 2) and is negatively polarized, as follows from Fresnel’s equations.  Externally
reflected rays (i = 1) are positively polarized at all scattering angles.  As m increases,
the intensity of these rays increases too, especially for grazing values of the local in-
cidence angle α  (Fig. 9.17), and becomes sufficient to cause a long peninsula of
positive polarization values at scattering angles between °10  and °30  for m = 1.8.
The steep ridge of positive polarization in the two right-hand columns of Plate 9.5 for
m = 1.2, 1.4, 1.6, and 1.8 is the primary rainbow.  The weaker positive feature at Θ  ~

°165  for m = 1.2 and Θ ~ °110  for m = 1.4 is the secondary rainbow.  Although the
secondary rainbow can be reliably identified in the polarization maps, it is barely seen
in the respective phase function plots even for 40eff =x  (cf. Fig. 9.21).  For m = 1.2
the primary and secondary rainbow regions merge with the region of Rayleigh scat-
tering, whereas for m = 1.4, 1.6, and 1.8 these regions are separated by areas of neu-
tral or negative polarization.

The two columns on the right of Plate 9.6 illustrate the effect of increasing the
imaginary part of the relative refractive index on the ratios ,13 aa  ,11 ab−  and 12 ab
for .4.1R =m   The corresponding panels in Plate 9.5 and on the left of Plate 9.6 pro-
vide a comparison for .0I =m   For small effective size parameters the effect of in-
creasing Im  from 0 to 0.01 is relatively weak.  For large particles the absorption of
refracted rays )2( ≥i  results in a dominance of diffracted light and externally re-
flected rays.  The latter are positively polarized and, for m = 1.4 + i0.3, yield a polari-
zation pattern similar to that of Rayleigh and Rayleigh–Gans scattering (compare the
rightmost middle panel of Plate 9.6 with the rightmost top panel of Plate 9.5).  The
only significant difference is that the maximum of polarization occurs at the scattering
angle °=−°=′ 08.71arctan2180 RmΘ  rather than at ;90°  here R arctan m  is the
Brewster angle.  The bridge of positive 13 aa  values at Θ  ~ °165  fades out with
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increasing Im  and eventually disappears.  As a result, the pattern of the ratio 13 aa
for m = 1.4 + i0.3 also closely resembles that of Rayleigh and Rayleigh–Gans scat-
tering (compare the rightmost top panel of Plate 9.6 with the top panel of the second
column of Plate 9.5), except that the scattering angle of zero values is now Θ′  rather
than 90º.  The ratio 12 ab  for large particles decreases with increasing imaginary part
of the relative refractive index and almost vanishes for .3.0I =m

9.7 Optical characterization of spherical particles

As we have mentioned previously, the potentially strong dependence of the scattering
properties of spherical particles on their size parameter and relative refractive index
makes measurements of electromagnetic scattering a powerful noninvasive means of
particle characterization.  In fact, there are so many applications of optical particle
characterization in laboratory and remote sensing research that simply listing them
would take an inordinate amount of space.  Therefore, we will describe only a few
selected examples, directing the reader for more details and further references to the
books by Kerker (1969), Bayvel and Jones (1981), Gouesbet and Gréhan (1988), Ste-
phens (1994), and Xu (2000), the feature journal issue edited by Hirleman and Bohren
(1991), and the recent review by Jones (1999).

 The lower curve in Fig. 9.29 depicts measurements of the intensity of the light
scattered by a slowly evaporating glycerol droplet at a scattering angle of approxi-
mately .90°   The droplet was illuminated by a linearly polarized laser beam at a
wavelength µm, 5145.01 =λ  the same beam being used to levitate the particle.  The
upper curve shows the results of Lorenz–Mie computations for a spherical droplet
with a radius ranging from 4.38 to 4.67 µm  and a relative refractive index of 1.4746
corresponding to that of glycerol at the visible wavelength.  Comparison of the two
curves demonstrates that by identifying the locations of the resonance features in the
experimental data the diameters of spherical droplets can be determined with extreme
precision. Chýlek et al. (1983) developed a technique for determining the relative
refractive index as well as the size of an optically levitated spherical particle illumi-
nated by a tunable dye laser.  The technique is based on analyzing both the wave-
lengths of the resonance peaks and the line profiles in the curve of the backscattered
intensity as a function of laser wavelength.  More recent developments have been
described by Huckaby et al. (1994), Ray and Nandakumar (1995), and Tu and Ray
(2001).

We already discussed in Section 8.1 the use of measurements of the Stokes scat-
tering matrix for sizing polydisperse water droplets (cf. Fig. 8.2).  Figure 9.30 illus-
trates another application of this technique.  The solid curves depict ratios of the ele-
ments of the normalized Stokes scattering matrix measured by Bottiger et al. (1980)
in the scattering-angle range °≤≤° 16512 Θ  for a spherical latex particle.  As the
source of light, Bottiger et al. used a He–Cd laser operating at a wavelength 441.6
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nm.  The electrostatic levitation technique allowed them to select a single particle and
trap it in a very small volume.  Bottiger et al. did not measure the size of the particle
and only indicated that the average diameter of latex microspheres used in their ex-
periments was 1091 nm with standard deviation 8 nm.  The results of monodisperse
Lorenz–Mie computations for the diameter 1091 nm and relative refractive index of
latex in air 1.588 showed no resemblance to the Bottiger et al. data (Mishchenko and
Mackowski 1996).  However, a very good agreement was found for the diameter
1122 nm, as demonstrated in Fig. 9.30 by the dotted curves.  Although Bottiger et al.
did not specify the magnitude of their experimental errors, the latter can perhaps be
inferred by comparing the experimental curves for the ratios 13 aa  and ,14 aa  which
must be the same for homogeneous spherical particles.  Despite some residual differ-
ences between the experimental data and the results of theoretical computations, the
numbers of major maxima and minima in the solid curves and their locations are re-
produced almost perfectly.  The dotted curves in the left- and right-hand panels of
Fig. 9.31 were computed for diameters 1108 and 1136 nm, respectively, and deviate
significantly from the experimental curves.  This demonstrates that the accuracy of
sizing the latex particle using measurements of the Stokes scattering matrix is better
than ±14 nm or 1.2%.

The final example illustrates the use of polarimetry for remotely retrieving cloud-
particle microphysics and represents what is perhaps the most spectacular achieve-
ment of planetary remote sensing.  Figures 9.32 and 9.33 show the results of ground-
based measurements of the linear polarization of sunlight reflected by Venus as a
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Figure 9.29.  Measurements and computations of the intensity (in arbitrary units) scattered by a
glycerol droplet at a scattering angle of approximately °90  versus droplet radius (after Chýlek
et al. 1992).
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function of scattering angle at wavelengths 0.55 and 0.99 µm, respectively.  The
curves depict the results of theoretical calculations based on a simple model of the
Venus atmosphere in the form of a homogeneous, optically semi-infinite, locally
plane-parallel cloud layer uniformly covering the entire planet (Hansen and Hovenier
1974).  The cloud particles were assumed to be spherical, and their single-scattering
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Figure 9.30.  Ratios of the elements of the normalized Stokes scattering matrix for a single
latex sphere.  The solid curves depict the laboratory data by Bottiger et al. (1980), whereas the
dotted curves show the results of Lorenz–Mie computations for the sphere diameter 1122 nm.
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Figure 9.31.  As in Fig. 9.30, but for diameters 1108 nm (left panel) and 1136 nm (right panel).
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Figure 9.32.  Observations of the polarization of sunlight reflected by Venus in the visual
wavelength region (symbols) and theoretical computations at µm 55.0 wavelength (curves).
The theoretical results are based on a model of nonabsorbing spherical particles with fixed
relative refractive index (m = 1.44) and fixed effective variance of the size distribution

0.07)( eff =v  (curves).  The different curves show the influence of the effective radius effra ≡
on the polarization. (After Hansen and Hovenier 1974.)
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properties were modeled using the Lorenz–Mie theory.  The computations of multiple
scattering of light in the atmosphere were based on the so-called adding/doubling
procedure for the numerical solution of the vector radiative transfer equation (Ho-
venier 1971; Hansen and Travis 1974).  Hansen and Hovenier used the simple gamma
distribution (5.245) to represent analytically the distribution of cloud particles over
sizes and found the parameters )( effra =  and )( effv=b  of this distribution, as well
as the relative refractive index, by minimizing the differences between the observa-
tional data and the results of model computations.  From the comparisons between the
computed and observed quantities, Hansen and Hovenier deduced the following.

● The observations can indeed be reproduced quantitatively using a model of
nonabsorbing spherical particles.  The observational data at visible wave-
lengths contain a clear signature of the spherical particle shape, such as the
primary rainbow at Θ  ~ °160  and the anomalous diffraction feature at Θ  ~

°25  (cf. Fig. 9.32 and the lower left panel of Plate 9.4).  This interpretation is
confirmed by the spectral variation of the observed polarization.
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Figure 9.33.  Observations (symbols) and theoretical computations (curves) of the polarization
of the sunlight reflected by Venus at µm 99.0  wavelength. The different theoretical curves are
for various relative refractive indices, the effective radius being selected in each case to yield
the closest agreement with the observations.  The effective variance of the cloud-particle size
distribution is fixed at 0.07.  (After Hansen and Hovenier 1974.)
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● The effective radius of the cloud particles is 1.05 ± 0.10 µm.
● The particle size distribution is narrow, with an effective variance 07.0eff =v

.02.0±
● The cloud-particle refractive index has a normal dispersion, decreasing from

1.46 ± 0.015 at a wavelength µm365.0  to 1.43 ± 0.015 at a wavelength
µm. 99.0

Based on the spectral dependence of the refractive index, Hansen and Hovenier con-
cluded that the cloud particles consist of a concentrated (76% by weight) aqueous
solution of sulfuric acid O).HSO(H 242 −   This remarkable result has been confirmed
by subsequent in situ measurements and observations from Venus-orbiting satellites
(e.g., Sato et al. 1996 and references therein).

Further reading

Scattering phenomena associated with homogeneous spherical particles are exten-
sively discussed in van de Hulst (1957), Nussenzveig (1992), Lynch and Livingston
(1995), and Grandy (2000).  An overview of scattering and absorption properties of
layered and radially inhomogeneous spherically symmetric particles can be found in
the books by Kerker (1969), Prishivalko et al. (1984), and Babenko et al. (2003).

 The use of laboratory measurements of scattering matrix elements for sizing
spherical particles is described by Maltsev et al. (1997) and Kaplan et al. (2000).  The
book edited by Gehrels (1974) contains many applications of polarimetry to particle
characterization in astrophysics and planetary remote sensing.  The use of polarimetry
in remote sensing of the terrestrial atmosphere is described by Brogniez et al. (1992),
Buriez et al. (1997), Mishchenko and Travis (1997), Deuzé et al. (2000), Masuda et
al. (2000), Sano and Mukai (2000), and Chowdhary et al. (2001).  Dubovik and King
(2000) and Lacis et al. (2000) discussed the retrieval of microphysical properties of
spherical aerosols using multi-wavelength measurements of extinction and sky radi-
ances.  The characterization of water-cloud droplets and spherical aerosol particles
using radiance measurements from space is reviewed by Nakajima and King (1990),
King et al. (1999), and Rossow and Schiffer (1999).




